ESBMC 1.24.1
(Competition Contribution)

Jeremy Morse, Mikhail Ramalho, Lucas Cordeiro, Denis Nicole, Bernd Fischer
ESBMC: SMT-based BMC of single- and multi-threaded software

• exploits SMT solvers and their background theories:
 – optimized encodings for pointers, bit operations, unions and arithmetic over- and underflow
 – efficient search methods (non-chronological backtracking, conflict clauses learning)
ESBMC: SMT-based BMC of single- and multi-threaded software

• exploits SMT solvers and their background theories:
 – optimized encodings for pointers, bit operations, unions and arithmetic over- and underflow
 – efficient search methods (non-chronological backtracking, conflict clauses learning)

• supports verifying multi-threaded software that uses pthreads threading library
 – interleaves only at “visible” instructions
 – lazy exploration of the reachability tree
 – optional context-bound
ESBMC: SMT-based BMC of single- and multi-threaded software

• exploits SMT solvers and their background theories:
 – optimized encodings for pointers, bit operations, unions and arithmetic over- and underflow
 – efficient search methods (non-chronological backtracking, conflict clauses learning)

• supports verifying multi-threaded software that uses pthreads threading library
 – interleaves only at “visible” instructions
 – lazy exploration of the reachability tree
 – optional context-bound

• derived from CBMC (v2.9) and has inherited its object-based memory model
ESBMC verification support

• built-in properties:
 – arithmetic under- and overflow, pointer safety, array bounds, division by zero, memory leaks, atomicity and order violations, deadlocks, data races
ESBMC verification support

• built-in properties:
 – arithmetic under- and overflow, pointer safety, array bounds, division by zero, memory leaks, atomicity and order violations, deadlocks, data races

• user-specified assertions:
 – (__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions:
 – (__ESBMC_atomic_begin, __ESBMC_atomic_end, __ESBMC_yield)
ESBMC verification support

• built-in properties:
 – arithmetic under- and overflow, pointer safety, array bounds, division by zero, memory leaks, atomicity and order violations, deadlocks, data races

• user-specified assertions:
 – (__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions:
 – (__ESBMC_atomic_begin, __ESBMC_atomic_end, __ESBMC_yield)

• support for several C++ features: polymorphism, inheritance, exception handling, templates and STL (using models)
Differences to ESBMC 1.22

• ESBMC 1.24.1 is largely a **bugfixing release**, but also:
 – Improved new intermediate representation
 → increased ESBMC’s speed by 2x
 – Support for boollector (>= 2.0), replaces Z3 as default solver
 – Decreased memory usage by ~23%.

• Several bug fixes on both sequential and parallel k-induction approach.
Results

• First place on BitVectors and Sequentialized
Results

• First place on BitVectors and Sequentialized

• Overall:
 – Second highest correct results (3898)
 – Highest number of false correct (318) and third higher false incorrect (122)
 – MemorySafety and Termination: fail to conform on the new report scheme
Thank you!

www.esbmc.org