
USB Simple Terminal

Problem Statement
I have an existing RS232 device that is connected to the serial port of my PC. My application software accesses the

device using the COMx system device in Windows.
I want to connect this existing device to the PC using USB. What hardware do I need to convert USB-to-RS232-to-USB

and what changes do I need to make to my application software?
For a more detailed problem statement, and a discussion of how to cost reduce this solution, refer to Chapter 8: Building

USB Bridges of USB Design By Example (ISBN 0471370487)

Example Solution
The example solution exists in two sections; the PC Host software and the USB I/O device firmware. The source code

for each section is supplied and this note documents the structure of the code so that it may be more easily modified to suit
your application.

This bridge solution is implemented as a USB HID (Human Interface Device) so no driver, DLL or other magic
operating system software need be written. The PC Host software is implemented as an applications-level program. This
solution works well for low-to-medium data rate peripherals – it is not suitable for high bandwidth communications.

The example solution uses an Anchorchips EZ-USB component as a USB-to-RS232-to-USB bridge. Less than 5% of
the capability of this device is used: a simpler microcontroller may be substituted (an exercise for the reader) or the
remaining 95% could be used to implement features and functions of the “existing RS232 device”.

PC Host application software
The PC Host software was developed using the “Windows Application” template in the Microsoft Visual C++

development toolkit. This template creates the basic framework for an application and custom routines are added to respond
to user inputs.

The program needs to support two independent tasks – monitor the keyboard for input and monitor USB for input. Two
program threads are required since the Windows system I/O routines that communicate with the USB subsystem are blocking
calls (ie they wait for data). A ListenToUSB thread to is created after the ‘Serial1’ USB device is detected as being attached
to the PC Host. The OpenUSBdevice function searches through a system table of the currently attached HID devices and
identifies the USB I/O device by its unique product name. A later release of this example software will allow for multiple
‘Serial1’ devices, this V0.9 Beta software only supports a single device.

Characters are collected in a large Buffer and the whole screen is repainted for each new character. A “real” simple
terminal program would manage special characters such as backspace, delete, TAB and others. This is left as an exercise for
the reader and I would request that you send program enhancements to me so that I could redistribute them. A more elegant
WM_PAINT routine, which just updated the section of window that changed, rather than repaint the whole window, would
also be appreciated.

A menu item selects Full or Half-Duplex mode. In half-duplex the keyboard characters are also sent to the display to
create a local echo.

The program runs until its window is closed or Exit is chosen.

USB I/O Device
The EZ-USB program is written in six modules just like all of the other “USB Design By Example” examples. All of the

enumeration code is reused. The descriptors define a HID with a single byte input report and a single byte output report.
Speed matching and buffering between the USB “side” and the RS232 “side” is implemented by two circular buffers. A

SendBuffer is filled by USB Ouput Reports and is emptied by transmitting the characters on the RS232 line. A
ReceiveBuffer is filled via received RS232 characters and emptied via USB Input Reports. Flags are set if either buffer
becomes full and the newest characters are discarded (a later version may do something more elegant). All buffer
filling/emptying is done under interrupt control.

Integrating this example into your design
Notice that OpenUSBdevice(“Serial1”) is called rather than CreateFile(“COM1”, . .). A file handle is returned in both

cases and this is used in later ReadFile, WriteFile and Close requests. This is a small change to your application program.
Yes, it would be nice for this USB device to enumerate as COM5 or COM6 but this is technically very difficult to do and will
restrict later expansion of this solution.

Note that the bytecount in the ReadFile and WriteFile requests MUST match the (Report Sizes + 1) declared in the HID
descriptor. This example program supports single byte transfers so that it looks as similar to RS232 as possible. The next
example, Serial8, will support 8-byte block transfers and will thus use USB more efficiently.

As always, please send any comments, corrections or questions to me using John@USB-By-Example.com.

