
Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

525525525525525

10.110.110.110.110.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
Digital Signal Processing Applications Using the ADSP-2100 Family, Volume
1, contains a chapter about digital filters. That chapter (Chapter 5) includes
information about second-order sections of Infinite Impulse Response, or
IIR, filters. The particular second-order sections discussed in Volume 1,
are commonly referred to as biquads.

This chapter includes the following variations on the basic IIR biquad
filter and the filter subroutines described in Volume 1:

• Multiprecision filters
• Optimized filter subroutines

10.1.110.1.110.1.110.1.110.1.1 IIR Biquad FilterIIR Biquad FilterIIR Biquad FilterIIR Biquad FilterIIR Biquad Filter
Figure 10.1 shows the structure of a second-order biquad IIR filter section.
You can design IIR filters of an order greater than two by cascading
multiple second-order biquad IIR filter sections. The filter sums the
products of the current input, x(n), the previous two inputs, x(n-1) and
x(n-2), the past two results, y(n-1) and y(n-2), and their respective
coefficients, b0, b1, b2, a1 and a2. The biquad has a necessary coefficient
scaling factor when one or more of the coefficients are greater than 1.0.

10.1.210.1.210.1.210.1.210.1.2 Biquad Filter SubroutineBiquad Filter SubroutineBiquad Filter SubroutineBiquad Filter SubroutineBiquad Filter Subroutine
Listing 10.1 is the subroutine from Digital Signal Processing Applications
Using the ADSP-2100 Family, Volume 1, for a basic biquad filter. This filter
has a 16-bit input, 16-bit output, and 16-bit coefficients. This code lets the
ADSP-2100 Family DSP perform a Nth-order IIR filter by performing N/2
biquads. The execution time is [8*(N/2) + 10] instruction cycles. For
example, a tenth-order filter executes in 50 instruction cycles, or in 3 µs
using a DSP with 60 ns cycle time. The DSP can perform a tenth-order IIR
filter on a signal sampled at more than 300 kSa/s.

1010101010

1010101010

526526526526526

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters
X (n)

B0

SCALE
FACTOR

Z -1

A1

Z -1Z -1

Z -1

A2B2

B1

Y (n)

Figure 10.1 Second-Order Biquad IIR Filter SectionFigure 10.1 Second-Order Biquad IIR Filter SectionFigure 10.1 Second-Order Biquad IIR Filter SectionFigure 10.1 Second-Order Biquad IIR Filter SectionFigure 10.1 Second-Order Biquad IIR Filter Section

.MODULE biquad_sub;
{ Cascaded Biquad IIR Filter Subroutine

Calling Parameters
SR1 = input sample
I0 —> delay line buffer
L0 = 0
I1 —> list of scale factors for each biquad section
L1 = 0 (in the case of a single biquad)

L1 = N/2 where N is the filter order
I4 —> scaled coefficients b2,b1,b0,a2,a1, b2,b1,b0,a2,a1,
L4 = 5 * N/2
M0,M4 = 1
M1 = -3
M2 = 1 (in the case of multiple biquads)

M2 = 0 (in the case of a single biquad)
M3 = (1 - length of delay line buffer)
CNTR = number of biquad sections

Return Values
SR1 = output sample
I0 —> inside delay line buffer

I1 —> top of scale factor list
I4 —> top of coefficients

527527527527527

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

Altered Registers

MX0,MX1,MY0,MR,SE,SR
Computation Time

8 * number of biquad sections + 10 cycles
All coefficients and data values are assumed to be in 1.15 format. }

.CONST N = 3; {number of biquad sections, example: 3}

.CONST N_x_5 = 15; {number of biquad sections times five}

.VAR/DM delayline[4]; {this is scratchpad memory}

.VAR/DM scalelist[N]; {initialize scale factor for each biquad}

.VAR/PM coefflist[N_x_5]; {init with filter coefficients for each biquad}

.ENTRY biquad;
biquad: I0=^delayline;

DO sections UNTIL CE;
SE=DM(I1,M2);
MX0=DM(I0,M0), MY0=PM(I4,M4); {get x(n-2), b2}
MR=MX0*MY0(SS), MX1=DM(I0,M0), MY0=PM(I4,M4); {get x(n-1), b1}
MR=MR+MX1*MY0(SS), MY0=PM(I4,M4); {get b0}

MR=MR+SR1*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);{get y(n-2), a2}
MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);{get y(n-1), a1}
DM(I0,M0)=MX1, MR=MR+MX0*MY0(RND); {store x(n-1) as new x(n-2)}

sections: DM(I0,M0)=SR1, SR=ASHIFT MR1 (HI); {store x(n) as new x(n-1)}
DM(I0,M0)=MX0;
DM(I0,M3)=SR1;

RTS;
.ENDMOD;

Listing 10.1 Basic Biquad Filter SubroutineListing 10.1 Basic Biquad Filter SubroutineListing 10.1 Basic Biquad Filter SubroutineListing 10.1 Basic Biquad Filter SubroutineListing 10.1 Basic Biquad Filter Subroutine

10.210.210.210.210.2 MULTIPRECISION FILTERSMULTIPRECISION FILTERSMULTIPRECISION FILTERSMULTIPRECISION FILTERSMULTIPRECISION FILTERS
When your calculations require more precision than 16-bit arithmetic
provides, you can still use ADSP-2100 family 16-bit DSPs. These DSPs
have architectural features that make multiprecision calculations possible.
Unlike other DSPs, the ADSP-2100 family processors let you multiply
mixed-mode numbers (signed numbers x unsigned numbers). This
chapter shows you how to take advantage of the multiprecision features of
the ADSP-2100 Family.

1010101010

528528528528528

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters
Multiprecision filters can have input data, output data, delay line data, or
coefficients greater than 16-bits. While a 16-bit IIR filter is adequate for
most applications, use multiprecision filters under the following
conditions:

• The filter has a small passband or stopband relative to the sample rate
• You require more than 16-bit precision on the delay line, or the delay

line and the coefficients

For example, consider a graphic equalizer where the sample rate is 44.1
kHz. The lowest equalizer band is centered at 31 Hz with stop bands at 0
Hz and 62 Hz. Although this filter is second-order, both the delay line and
the coefficients require 32-bit arithmetic for the desired accuracy.

ADC converters, like the ones in the example graphic equalizer, are now
available with 18-bit and 20-bit resolution. A digital filter with 32-bit
accuracy preserves the arithmetic precision of the filter algorithm. This lets
the DSP programmer maintain the signal-to-noise ratio delivered by the
ADC.

10.2.110.2.110.2.110.2.110.2.1 Multiprecision Multiplication On ADSP-2100 Family DSPsMultiprecision Multiplication On ADSP-2100 Family DSPsMultiprecision Multiplication On ADSP-2100 Family DSPsMultiprecision Multiplication On ADSP-2100 Family DSPsMultiprecision Multiplication On ADSP-2100 Family DSPs
Multiprecision filters require multiprecision multiplication. ADSP-2100
Family DSPs include a 16-bit multiplier/accumulator with a 40-bit result
register that is most efficient when working with 16-bit inputs. When you
multiply 32-bit or 48-bit inputs, multiplication is accomplished by
breaking the inputs into 16-bit components.

The code segment in Listing 10.2 is an example of multiplying two 32-bit
inputs. Normally, when you multiply two 32-bit values, you get a 64-bit
result. In this example, only 32 bits are required. To save instruction cycles
and properly scale the partial products of each multiplication, the code
shifts the contents of the multiply results registers “on-the-fly” to
overwrite the lower 16 bits. This is more efficient than using processor
cycles to write the contents to the barrel shifter.

Registers MX0 and MX1 contain the least significant word (lsw) and most
significant word (msw) of one input. Registers MY0 and MY1 contain the
least and most significant words of the second input.

529529529529529

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

MR=MX0*MY0(UU); {multiply unsigned lsws}

MR0=MR1; {shift product 16-bits right}
MR1=MR2;
MR=MR+MX1*MY0(SU);{multiply signed msws times unsigned lsws}
MR=MR+MX0*MY1(US);{and accumulate with shifted lsw product}
MR0=MR1; {shift product 16-bits right}
MR1=MR2;

MR=MR+MX1*MY1(SS);{multiply signed msws and accumulate with}
 {shifted intermediate product}

Listing 10.2 Double-Precision Multiply RoutineListing 10.2 Double-Precision Multiply RoutineListing 10.2 Double-Precision Multiply RoutineListing 10.2 Double-Precision Multiply RoutineListing 10.2 Double-Precision Multiply Routine

To generate the product, the code in Listing 10.2 performs the following
operations, which are also shown in Figure 10.2.

1. It multiplies the unsigned contents of registers MX0 (lower 16 bits) and
MY0 (lower 16 bits). The 32-bit product is put in the multiplier/
accumulator results register MR (MR0, MR1, and MR2).

2. The contents of MR1 are shifted right 16 bits to MR0, this overwrites,
or eliminates, the lower 16 bits. The contents of MR2 are shifted right
16 bits to MR1.

3. Next, it multiplies the signed contents of register MX1 (upper 16 bits)
and unsigned contents of register MY0 (lower 16 bits), and
accumulates this product with the contents of MR.

4. It then multiplies the unsigned contents of register MX0 (lower 16 bits)
and the signed contents of register MY1 (upper 16 bits), and
accumulates this product with the contents of MR.

5. This product is shifted 16 bits right, as described in step 2.

6. Finally, it multiplies the signed contents of registers MX1 (upper 16
bits) and MY1 (upper 16 bits), and accumulates this 32-bit product
with the contents of MR.

This method assumes that the inputs to the filter are twos complement
fractional where the most significant bit weighting is -20, or -1.
Multiplying two 32-bit numbers generates a 64-bit product. With
fractional products, the most significant 32 bits are saved; the lower 32 bits
are used to properly scale the partial products and then are overwritten by
MR1 (MR0=MR1) during the 16-bit right shifts. The 32-bit fractional
product is in the accumulator with the msw in register MR1 and the lsw in
register MR0.

1010101010

530530530530530

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

Step 2
Shift 16 Bits Right

MR0MR2

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Step 1
MX0 x MY0 = MR

MR0MR2 MR1

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Step 3
MX1 x MY0 + MR = MR

MR0MR2 MR1

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Step 4
MY1 x MX0 + MR = MR

Step 5
Shift 16 Bits Right

MR0MR2 MR1

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Step 6
MX1 x MY1 + MR = MR

8-Bit Extensio 32-Bit Produ

MX1 MX0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MY1 MY0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

SIGN EXTENDED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

SIGN EXTENDED

Figure 10.2 Multiprecision Multiplication Of 32-Bit NumbersFigure 10.2 Multiprecision Multiplication Of 32-Bit NumbersFigure 10.2 Multiprecision Multiplication Of 32-Bit NumbersFigure 10.2 Multiprecision Multiplication Of 32-Bit NumbersFigure 10.2 Multiprecision Multiplication Of 32-Bit Numbers

The technique used in Listing 10.2 can be applied to multiprecision IIR
biquads. For example, an IIR biquad has five product terms that are
accumulated:

y(n) = b0*x(n) + b1*x(n-1) + b2*x(n-2) + a1*y(n-1) + a2*y(n-2)

Instead of multiplying each 32-bit delay line input and coefficient pair one
at a time, follow these steps to calculate a 32-bit delay line/coefficient
biquad:

1. First, accumulate the lsw products of the five delay line/coefficient
pairs.

2. Then, shift the accumulator 16-bits right.

3. Next, accumulate the msw/lsw and lsw/msw products.

4. Again, shift the accumulator 16-bits right.

5. Finally, accumulate the msw products.

531531531531531

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

In this method, the accumulator is shifted only twice for each biquad. As a
result, this technique is more efficient than generating the full product for
each pair and accumulating the full products.

10.2.210.2.210.2.210.2.210.2.2 Double-Precision BiquadDouble-Precision BiquadDouble-Precision BiquadDouble-Precision BiquadDouble-Precision Biquad
Listing 10.3 shows a double-precision IIR biquad subroutine with a 32-bit
delay line and 32-bit coefficients. The calling routine initializes registers
with the following items:

• 32-bit input sample
• Start addresses of the delay line
• Coefficient
• Scaling factor buffers
• Number of sections

Also, the calling routine sets the data address generator (DAG) length and
modify registers to support modulo addressing. When you initialize
registers in the calling routine, the biquad subroutine is reusable.

The code only clears the delay line buffer once before the first filter call.
After the filter subroutine is called, the code stores delay line data in the
buffer (lsw first, then msw). The filter coefficients are stored in the reverse
order of the delay line data (msw first). After completing the calculations,
the routine returns a 32-bit result in the shifter result registers SR1 and
SR0.

This routine uses the circular addressing mode to retrieve and store data
efficiently into the delay line. The starting address of the buffer in register
I0 changes each time the filter is called, therefore, this address must be
saved to memory if other routines use I0.

The core loop of Listing 10.3, starting at “ DO biq UNTIL CE: ”, groups
line of code according to function. The comment above each group
describes its function.

The execution time for this code is [28*(N/2) + 10] instruction cycles. A
tenth-order filter executes in 150 instruction cycles, or in 9 µs using a DSP
with 60 ns cycle time. The DSP can perform a tenth-order IIR filter on a
signal sampled at more than 100 kSa/s.

1010101010

532532532532532

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

.MODULE/RAM/BOOT=0 dpiir_2p2z;

{
Nth Order IIR Filter Constructed From N/2 Biquads of the Form:

y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+a1*y(n-1)+a2*x(n-2)

Where:
x(n), x(n-1), x(n-2), y(n-1), y(n-2) are 32-bits

b0, b1, b2, a1, a2 are 32-bits

Calling Parameters:
AX0=least significant word (LSW) of input
AX1=most significant word (MSW) of input
I0=start address of delay line in data memory stored in

LSW,MSW order [organized x(n-1),x(n-2),y(n-1),y(n-2)]
buffer length = (4*N/2)+4 where N is the order of the
filter - must be declared circular

I4=start address of coefficients in program memory stored
in MSW,LSW order [organized b0,b1,b2,a1,a2]
buffer length = 10*N/2 - circular declaration not required

I5=start address of coefficient scaling factors in program

memory (one/section)
buffer length = N/2 - circular declaration not required

L0=(4*N/2)+4
L4=0
L5=0
M0=-1, M1=1, M2=2, M3=-6

M5=1, M6=2, M7=-9
CNTR=N/2

Return Values:
I0=new start address of delay line must be saved to memory
SR1=MSW result

SR0=LSW result

Altered Registers:
MX0,MY0,MR,SE,SR

Computation Time:

10 + (28 * N/2)

Coefficients, delay line, input sample in 1.31 (Q.31) format
}

533533533533533

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

.ENTRY biq32;

biq32: SR1=AX1; {transfer input to SR}
 SR0=AX0;
 MODIFY(I4,M5);
 MY0=PM(I4,M6); {read first coefficient}
 SE=PM(I5,M5); {read first scaling factor}

 DO biq UNTIL CE; {set up biquad loop}

{multiply/accumulate LSW*LSW}

MR=SR0*MY0(UU), MX0=DM(I0,M2), MY0=PM(I4,M6);

MR=MR+MX0*MY0(UU), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M3), MY0=PM(I4,M7);
MR=MR+MX0*MY0(UU), MY0=PM(I4,M5);

MR0=MR1; {16-bit right shift}
MR1=MR2;

{multiply/accumulate LSW*MSW, MSW*LSW}

MR=MR+SR0*MY0(US), MY0=PM(I4,M5);
MR=MR+SR1*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);

MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M3), MY0=PM(I4,M7);

MR=MR+MX0*MY0(SU), MY0=PM(I4,M6);

MR0=MR1; {16-bit right shift}
MR1=MR2;

(listing continues on next page)

1010101010

534534534534534

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

{multiply/accumulate MSW*MSW}

MR=MR+SR1*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5);

{apply scale factor, read next scale factor}

SR=ASHIFT MR1 (HI), MY0=PM(I4,M6);
SR=SR OR LSHIFT MR0 (LO), SE=PM(I5,M5);

{store new y(n) to delay line}

DM(I0,M1)=SR0;
biq: DM(I0,M1)=SR1;

MODIFY(I0,M2);
DM(I0,M1)=AX0; {store original input to delay line}

DM(I0,M0)=AX1;

RTS;

.ENDMOD;

Listing 10.4 is an optimized version of Listing 10.3. In Listing 10.4, the lsw
multiply/accumulates are eliminated, reducing the feedback accuracy
from 32-bits to 31-bits. In most cases, the code in listing 10.4 provides
adequate performance.

The execution time is [20*(N/2) + 9] instruction cycles. A tenth-order filter
executes in 109 instruction cycles, or in 6.54 µs using a DSP with 60 ns
cycle time. The DSP can perform a tenth-order IIR filter on a signal
sampled at more than 150 kSa/s.

Listing 10.3 Double-Precision IIR Biquad SubroutineListing 10.3 Double-Precision IIR Biquad SubroutineListing 10.3 Double-Precision IIR Biquad SubroutineListing 10.3 Double-Precision IIR Biquad SubroutineListing 10.3 Double-Precision IIR Biquad Subroutine

535535535535535

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

.MODULE/RAM/BOOT=0 dpiir_2p2z_optimized;

{
IIR Filter of the Form:

y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+a1*y(n-1)+a2*x(n-2)

Where:

x(n), x(n-1), x(n-2), y(n-1), y(n-2) are 32-bits
b0, b1, b2, a1, a2 are 32-bits

Calling Parameters:
AX0=least significant word (LSW) of input
AX1=most significant word (MSW) of input

I0=start address of delay line in data memory stored in
LSW,MSW order [organized x(n-1),x(n-2),y(n-1),y(n-2)]
buffer length = (4*N/2)+4 where N is the order of the
filter - must be declared circular

I4=start address of coefficients in program memory stored
in MSW,LSW order [organized b0,b1,b2,a1,a2]
buffer length = 10*N/2 - circular declaration not required

I5=start address of coefficient scaling factors (one/section)
buffer length = N/2 - circular declaration not required

L0=(4*N/2)+4
L4=0
L5=0
M0=-1, M1=1, M2=2, M3=-6

M5=1, M6=2, M7=-9
CNTR=N/2

Return Values:
I0=new start address of delay line must be saved to memory
SR1=MSW result

SR0=LSW result

Altered Registers:
MX0,MY0,MY1,MR,SE,SR

Computation Time:

9 + (20 * N/2)

Coefficients, delay line, input sample in 1.31 (Q.31) format
}

(listing continues on next page)

1010101010

536536536536536

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

ENTRY opt_biq32;

opt_biq32:

SR1=AX1; {transfer input to SR}
SR0=0;
MY0=PM(I4,M5); {read first coefficient}

MY1=PM(I4,M5); {read second coefficient}
DO biq UNTIL CE; {set up biquad loop}

{multiply/accumulate LSW*LSW, read scale factor}

MR=SR0*MY0(US), SE=PM(I5,M5);
MR=MR+SR1*MY1(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);

MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M3), MY0=PM(I4,M7);
MR=MR+MX0*MY0(SU), MY0=PM(I4,M6);

MR0=MR1; {16-bit right shift}
MR1=MR2;

{multiply/accumulate LSW*MSW, MSW*LSW}

MR=MR+SR1*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M6);

MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5);

{apply scale factor, store y(n) to delay line}

537537537537537

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

SR=LSHIFT MR0 (LO), MY1=PM(I4,M5);

DM(I0,M1)=SR0, SR=SR OR LSHIFT MR1 (HI);
biq: DM(I0,M1)=SR1;

MODIFY(I0,M2);
DM(I0,M1)=AX0; {store inputs to delay line}
DM(I0,M0)=AX1;

RTS;

.ENDMOD;

Listing 10.4 Optimized Double-Precision IIR Biquad SubroutineListing 10.4 Optimized Double-Precision IIR Biquad SubroutineListing 10.4 Optimized Double-Precision IIR Biquad SubroutineListing 10.4 Optimized Double-Precision IIR Biquad SubroutineListing 10.4 Optimized Double-Precision IIR Biquad Subroutine

10.2.310.2.310.2.310.2.310.2.3 Half, Double-Precision BiquadHalf, Double-Precision BiquadHalf, Double-Precision BiquadHalf, Double-Precision BiquadHalf, Double-Precision Biquad
The half, double-precision IIR Biquad subroutine in Listing 10.5 maintains
a 32-bit delay line, but reduces the coefficients to 16-bit precision. This
routine is useful when a 16-bit biquad (as shown in Listing 10.1) has the
desired accuracy, but lacks the necessary stability.

The execution time is [16*(N/2) + 9] instruction cycles. A tenth-order filter
executes in 89 instruction cycles, or in 5.34 µs using a DSP with 60 ns cycle
time. The DSP can perform a tenth order IIR filter on a signal sampled at
more than 180 kSa/s.

.MODULE/RAM/BOOT=0 dpiir_2p2z_32_16;

{
IIR Filter of the Form:

y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+a1*y(n-1)+a2*x(n-2)

Where:
x(n), x(n-1), x(n-2), y(n-1), y(n-2) are 32-bits

b0, b1, b2, a1, a2 are 16-bits

Calling Parameters:
AX0=least significant word (LSW) of input
AX1=most significant word (MSW) of input
I0=start address of delay line in data memory stored in

LSW,MSW order [organized x(n-1),x(n-2),y(n-1),y(n-2)]
buffer length = (4*N/2)+4 where N is the filter order
buffer must be declared circular

(listing continues on next page)

1010101010

538538538538538

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

I4=start address of coefficients in program memory

[organized b0,b1,b2,a1,a2] - buffer length = 5*N/2
does not require circular declaration

I5=start address of coefficient scaling factors in program
memory (one/section) - buffer length = N/2
does not require circular declaration

L0=(4*N/2)+4

L4=0
L5=0
M0=-1, M1=1, M2=2, M3=-5
M5=1, M7=-4
CNTR=N/2

Return Values:
I0=new start address of delay line must be saved to memory
SR1=MSW result
SR0=LSW result

Altered Registers:
MX0,MY0,MR,SE,SR

Computation Time:
9 + (16 * number of sections)

Coefficients in 1.15 (Q.15) format
Delay line, input sample in 1.31 (Q.31) format

}

.ENTRY biq_3216;

biq_3216: SR1=AX1; {copy input to SR}
SR0=AX0;

MY0=PM(I4,M5); {read first coefficient}
SE=PM(I5,M5); {read first scaling factor}

DO biq UNTIL CE; {set up biquad loop}

{multiply/accumulate LSW delay line * coef}

539539539539539

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

MR=SR0*MY0(US), MX0=DM(I0,M2), MY0=PM(I4,M5);

MR=MR+MX0*MY0(US), MX0=DM(I0,M2), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M2), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M3), MY0=PM(I4,M7);
MR=MR+MX0*MY0(US), MY0=PM(I4,M5);

MR0=MR1; {16-bit right shift}

MR1=MR2;

{multiply/accumulate MSW delay line * coef}

MR=MR+SR1*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M5);

MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SS);

{scale factor correction}

SR=ASHIFT MR1 (HI), MY0=PM(I4,M5);

SR=SR OR LSHIFT MR0 (LO), SE=PM(I5,M5);

DM(I0,M1)=SR0; {store y(n) to delay line}
biq: DM(I0,M1)=SR1;

MODIFY(I0,M2);

DM(I0,M1)=AX0; {store input to delay line}
DM(I0,M0)=AX1;

RTS;

.ENDMOD;

Listing 10.5 Half, Double-Precision IIR Biquad SubroutineListing 10.5 Half, Double-Precision IIR Biquad SubroutineListing 10.5 Half, Double-Precision IIR Biquad SubroutineListing 10.5 Half, Double-Precision IIR Biquad SubroutineListing 10.5 Half, Double-Precision IIR Biquad Subroutine

1010101010

540540540540540

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters
10.2.410.2.410.2.410.2.410.2.4 Half, Triple-Precision BiquadHalf, Triple-Precision BiquadHalf, Triple-Precision BiquadHalf, Triple-Precision BiquadHalf, Triple-Precision Biquad
The half, triple-precision IIR Biquad subroutine in Listing 10.6 has a 48-bit
delay line and increases the coefficients to 32-bit precision. This subroutine
provides a filter resolution that is usually reserved for floating-point
arithmetic. The code in Listing 10.6 gives you 32-bit, floating-point
precision on a 16-bit fixed-point DSP. Filters with extremely narrow pass
or reject bands may require this precision.

The execution time is [45*(N/2) + 12] instruction cycles. A tenth-order
filter executes in 237 instruction cycles, or in 14.22 µs using a DSP with 60
ns cycle time. The DSP can perform a tenth-order IIR filter on a signal
sampled at more than 70 kSa/s.

.MODULE/RAM/BOOT=0 half_triple_precision_iir_biquad;

{
IIR Filter of the Form:

y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+a1*y(n-1)+a2*x(n-2)

Where:
x(n), x(n-1), x(n-2), y(n-1), y(n-2) are 48-bits
b0, b1, b2, a1, a2 are 32-bits

Calling Parameters:

AR=lower word of input
AX0=middle word of input
AX1=upper word of input
I0=start address of delay line lower word in data memory stored in

[x(n-1),x(n-2),y(n-1),y(n-2)] order buffer length = (2*N/2)+2
where N is filter order must be declared circular

I1=start address of delay line middle word in data memory stored in
[x(n-1),x(n-2),y(n-1),y(n-2)] order buffer length = (2*N/2)+2
where N is filter order must be declared circular

I2=start address of delay line upper word in data memory stored in
[x(n-1),x(n-2),y(n-1),y(n-2)] order buffer length = (2*N/2)+2
where N is filter order must be declared circular

I4=start address of coefficients in program memory stored in MSW,LSW
order [organized b0,b1,b2,a1,a2] buffer length = 10*N/2
does not require circular declaration

I5=start address of coefficient scaling factors in program
memory (one/section) - buffer length = N/2
does not require circular declaration

541541541541541

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

L0=(2*N/2)+2

L1=(2*N/2)+2
L2=(2*N/2)+2
L4=0
L5=0
M0=0, M1=1, M3=-3
M5=1, M6=2, M7=-9

CNTR=N/2

Return Values:
I0,I1,I2 -> new start address of delay line must be saved to memory
SR1=upper result
SR0=middle result

AR=lower result

Altered Registers:
MX0,MY0,MR,SE,SR,SI,AF

Computation Time:
12 + (45 * number of sections)

Coefficients in 1.31 (Q.31) format
Delay line, input sample, result in 1.47 (Q.47) format

}

.ENTRY biq_3P;

biq_3P:

SR1=AX1; {SR = upper/middle word}
AF=PASS AR, SR0=AX0; {AF = lower word}
MODIFY(I4,M5);

MY0=PM(I4,M6); {read first coefficient}

DO biq UNTIL CE; {set up biquad loop}

{multiply/accumulate - lower delay*lower coef}

(listing continues on next page)

1010101010

542542542542542

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

MR=AR*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M6);

MR=MR+MX0*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M6);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M6);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M3), MY0=PM(I4,M7);
MR=MR+MX0*MY0(UU), MY0=PM(I4,M5);
MR=MR(RND), SE=PM(I5,M5);

{shift accumulator 16-bits right}

MR0=MR1;
MR1=MR2;

{multiply/accumulate - middle delay*lower coef, lower delay*upper coef}

MR=MR+AR*MY0(US), MY0=PM(I4,M5);
MR=MR+SR0*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I1,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I1,M1), MY0=PM(I4,M5);

MR=MR+MX0*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I1,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M3), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I1,M3), MY0=PM(I4,M7);
MR=MR+MX0*MY0(UU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR(RND);

{shift accumulator 16-bits right}

MR0=MR1;
MR1=MR2;

{multiply/accumulate - upper delay*lower coef, middle delay*upper coef}

MR=MR+SR0*MY0(US), MY0=PM(I4,M5);
MR=MR+SR1*MY0(SU), MX0=DM(I1,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I2,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I1,M1), MY0=PM(I4,M5);

MR=MR+MX0*MY0(US), MX0=DM(I2,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I1,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I2,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I1,M3), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I2,M3), MY0=PM(I4,M7);
MR=MR+MX0*MY0(SU), MX0=DM(I1,M1), MY0=PM(I4,M6);

543543543543543

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

{shift accumulator 16-bits right}

SR0=MR0;
MR0=MR1;
MR1=MR2;

{multiply/accumulate - upper delay*upper coef}

MR=MR+SR1*MY0(SS), MX0=DM(I2,M1), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I2,M1), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I2,M1), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I2,M3), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS), MX0=DM(I2,M1), MY0=PM(I4,M5);

{apply scale factor to biquad result, write scaled result to delay line}

scale_it: SR=LSHIFT SR0 (LO), MY0=PM(I4,M6);
AR=SR0;
SR=LSHIFT SR1 BY 0 (LO);

DM(I0,M1)=AR, SR=SR OR LSHIFT MR0 (LO);
DM(I1,M1)=SR0, SR=SR OR ASHIFT MR1 (HI);

biq: DM(I2,M1)=SR1;

{store original inputs to delay line}

MODIFY(I0,M1);
MODIFY(I1,M1);
MODIFY(I2,M1);
DM(I2,M0)=AX1;
DM(I1,M0)=AX0, AR=PASS AF;
DM(I0,M0)=AR;

RTS; {return}

.ENDMOD;

Listing 10.6 Half, Triple-Precision IIR Biquad SubroutineListing 10.6 Half, Triple-Precision IIR Biquad SubroutineListing 10.6 Half, Triple-Precision IIR Biquad SubroutineListing 10.6 Half, Triple-Precision IIR Biquad SubroutineListing 10.6 Half, Triple-Precision IIR Biquad Subroutine

1010101010

544544544544544

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters
10.310.310.310.310.3 OPTIMIZED 16-BIT BIQUADSOPTIMIZED 16-BIT BIQUADSOPTIMIZED 16-BIT BIQUADSOPTIMIZED 16-BIT BIQUADSOPTIMIZED 16-BIT BIQUADS
If 16-bit accuracy is adequate for your application, you can use the two
subroutines included in this section. While these routines are similar to the
program in Listing 10.1, they are optimized to require fewer instruction
cycles to execute.

The program in Listing 10.7 provides the identical results to the program
in Listing 10.1, but, in Listing 10.7, it executes the biquad loop in six
instruction cycles rather the seven. This decrease results from the ADSP-
2100 Family’s modulo addressing capability.

To optimize the filter, the program uses a circular buffer that contains
input data and output data. If you carefully arrange the data in the delay
line and use the modulo addressing of the data address generators, you
will have an efficient addressing scheme that lets you use any address in
the circular buffer as the starting address. Modulo addressing only applies
to the delay line; it is not required for the coefficient and scale factor
buffers. Modulo addressing is also used in the multiprecision IIR filters in
this chapter. You must save the delay line address pointer, index register
I0, to memory after each call if I0 is used elsewhere in the program.

Figure 10.3 is a memory map that illustrates modulo addressing. This
figure shows three time intervals. In the first interval (t), addresses 1, 3,
and, 5 contain the oldest data. Because the oldest data is not needed
during the second interval (t + 1), new data is written into those locations.
Data in addresses 0, 2, and 4 is preserved for the second interval, but it
becomes the oldest data. For example, X0(n-1) from the first interval
becomes X0(n-2) in the second interval. In the third sample interval, the
oldest data from the second interval is overwritten. The cycle continues
for every new sample interval. This method lets save instruction cycles
because you move the pointers to the circular buffer, rather than move the
buffer contents. You can also use the modulo addressing advantages for
feedback values in the delay line or past results. For example, past result
y(n-1) is used as y(n-2) during the next sample interval without moving to
another memory location.

545545545545545

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

X0(n - 2)

X0(n - 1)

Y0(n - 2) & X1(n - 2)

Y0(n - 1) & X1(n - 1)

Y1(n - 2)

Y1(n - 1)

Sample Interval (t)
n = 5

Address

0

1

2

3

4

5

Oldest Data

Y1(5)

X0(5)

Y0(5) & X1(5)

Sample Interval (t + 1)
n = 6

X0(n - 2)

X0(n - 1)

Y0(n - 2) & X1(n - 2)

Y0(n - 1) & X1(n - 1)

Y1(n - 2)

Y1(n - 1)

Address

0

1

2

3

4

5

Y0(n - 2) & X1(n - 2)

Y0(n - 1) & X1(n - 1)

Y1(n - 1)

Y1(n - 2)

X0(n - 2)

X0(n - 1)

Address

0

1

2

3

4

5

Y1(6)

X0(6)

Y0(6) & X1(6)

Sample Interval (t + 2)
n = 7

Figure 10.3 Modulo Addressing & Delay Line DataFigure 10.3 Modulo Addressing & Delay Line DataFigure 10.3 Modulo Addressing & Delay Line DataFigure 10.3 Modulo Addressing & Delay Line DataFigure 10.3 Modulo Addressing & Delay Line Data

The execution time is [7*(N/2) + 6] instruction cycles. A tenth-order filter
executes in 41 instruction cycles, or in 2.46 µs using a DSP with 60 ns cycle
time. The DSP can perform a tenth-order IIR filter on a signal sampled at
more than 400 kSa/s.

.MODULE/boot=0 optimized_biquad_sub;

{
Optimized Cascaded Biquad IIR Filter Subroutine (Direct Form I)
Calling Parameters

SR1 = input sample
I0 —> delay line buffer in data memory

x(n-2),x(n-1),y(n-2),y(n-1) order

buffer length = 2N+2 where N is the filter order
L0 = 2N+2 - circular buffer declaration required
I4 —> scaled coefficients in program memory b2,b1,b0,a2,a1 order

buffer length = 5*N/2 - circular buffer not required
L4 = 0
I5 —> coefficient scale factors in program memory

buffer length = N - circular buffer not required
L5 = 0
 M0 = 0
M1,M4 = 1
M3,M5 = -1
CNTR = N/2

(listing continues on next page)

1010101010

546546546546546

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

Return Values

SR1 = output sample
I0 —> new delay line buffer start address must be saved to memory

Altered Registers

MX0,MY0,MR,SR,SE

Computation Time

7 * number of biquad sections + 6 cycles

All coefficients and data values are assumed to be in 1.15 format.

}

.ENTRY optbiq;

optbiq:

SE=PM(I5,M4); {read coefficient sclaing factor}

MX0=DM(I0,M1), MY0=PM(I4,M4); {x=x(n-2), y=b2}
DO sections UNTIL CE;

MR=MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
{mult, x=x(n-1), y=b1}

MR=MR+MX0*MY0(SS), MY0=PM(I4,M4);
{mac, y=b0}

MR=MR+SR1*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
{mac, x=y(n-2), y=a2}

MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M4);
{mac, x=y(n-1), y=a1}

MR=MR+MX0*MY0(RND), MX0=DM(I0,M0), MY0=PM(I4,M4);
{mac, x=next x(n-2), y=next b2}

DM(I0,M1)=SR1, SR=ASHIFT MR1 (HI);
{x(n)->new x(n-1), scale result}

sections: SR=SR OR LSHIFT MR0 (LO), SE=PM(I5,M4);
{continue scaling, new scale factor}

MX0=DM(I0,M1); {dummy read to modify pointer}
DM(I0,M1)=SR1; {store last result into delay line}

{must return new I0}
RTS;

.ENDMOD;

Listing 10.7 Optimized Basic Biquad Filter SubroutineListing 10.7 Optimized Basic Biquad Filter SubroutineListing 10.7 Optimized Basic Biquad Filter SubroutineListing 10.7 Optimized Basic Biquad Filter SubroutineListing 10.7 Optimized Basic Biquad Filter Subroutine

547547547547547

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

Listing 10.8 further optimizes the filter because the coefficient scaling
factor for each biquad is the same. This eliminates the need to read the
scaling factor from program memory.

The biquad loop in Listing 10.7 includes a double-precision shift for
scaling factor correction. Listing 10.8 performs a single-precision shift.
Since the scaling factor typically implies a one-bit left shift, a single
precision shift yields a zero as the least significant bit. Therefore, the result
from Listing 10.8 only has 15-bit accuracy. This may change filter
performance if the filter was designed for 90 dB or greater stopband
attenuation, which may effect the filter’s stability.

The execution time is [6*(N/2) + 5] instruction cycles. A tenth-order filter
executes in 35 instruction cycles, or in 2.1 µs using a DSP with 60 ns cycle
time. The DSP can perform a tenth-order IIR filter on a signal sampled at
more than 470 kSa/s.

.MODULE/boot=0 optimized_biquad_sub;

{
Optimized Cascaded Biquad IIR Filter Subroutine (Direct Form I)

Calling Parameters
SR1 = input sample
I0 —> delay line buffer in data memory

x(n-2),x(n-1),y(n-2),y(n-1) order

buffer length = 2N+2 where N is the filter order
buffer must be declared circular

L0 = 2N+2
I4 —> scaled coefficients in program memory

b2,b1,b0,a2,a1 order
buffer length = 5*N/2 - circular buffer not required

L4 = 2.5 * filter order —or— 5 * number of biquad sections
M0 = 0
M1,M4 = 1
M3,M5 = -1
CNTR = number of biquad sections
SE = shift count (must be same for all biquad sections)

Return Values
SR1 = output sample
I0 —> new delay line buffer start address must be stored to memory

(listing continues on next page)

1010101010

548548548548548

Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

Altered Registers

MX0,MY0,MR,SR

Computation Time
6 * number of biquad sections + 5 cycles

All coefficients and data values are assumed to be in 1.15 format.

}

.ENTRY optbiq;

optbiq:

MX0=DM(I0,M1), MY0=PM(I4,M4); {x=x(n-2), y=b2}
DO sections UNTIL CE;

MR=MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
{mult, x=x(n-1), y=b1}

MR=MR+MX0*MY0(SS), MY0=PM(I4,M4);
{mac, y=b0}

MR=MR+SR1*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
{mac, x=y(n-2), y=a2}

MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M4);
{mac, x=y(n-1), y=a1}

MR=MR+MX0*MY0(RND), MX0=DM(I0,M0), MY0=PM(I4,M4);
{mac, x=next x(n-2), y=next b2}

sections: DM(I0,M1)=SR1, SR=ASHIFT MR1 (HI);
{x(n)->new x(n-1), scale result}

MX0=DM(I0,M1), MY0=PM(I4,M5);
DM(I0,M1)=SR1; {store last result into delay line}

{must return new I0}
RTS;

.ENDMOD;

Listing 10.8 Second-Level Optimization Of Basic Biquad FilterListing 10.8 Second-Level Optimization Of Basic Biquad FilterListing 10.8 Second-Level Optimization Of Basic Biquad FilterListing 10.8 Second-Level Optimization Of Basic Biquad FilterListing 10.8 Second-Level Optimization Of Basic Biquad Filter

549549549549549

1010101010Variations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR BiquadVariations On IIR Biquad
FiltersFiltersFiltersFiltersFilters

10.410.410.410.410.4 CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
This chapter provides you with precision-related options when designing
digital IIR filters. Depending on the filter characteristics, 15-bit, 16-bit, 32-
bit or 48-bit, precision may be required in the delay line for an IIR biquad
to function correctly. Filter coefficients may also require 32-bit precision to
ensure filter stability. Higher precision IIR filters are available at the
expense of instruction cycles. Table 10.1 lists the subroutines listed in this
chapter, their characteristics, and performance.

Listing # Filename delay line coefficients performance
bits # bits # cycles

8 iir1516.dsp 15-bits 16-bits 6*(N/2) + 5
7 iir1616.dsp 16-bits 16-bits 7*(N/2) + 6
5 iir3216.dsp 32-bits 16-bits 16*(N/2) + 9
4 iir3132.dsp 31-bits 32-bits 20*(N/2) + 9
3 iir3232.dsp 32-bits 32-bits 28*(N/2) + 10
6 iir4832.dsp 48-bits 32-bits 45*(N/2) + 12

where N = filter order

Table 10.1 Filter Routine Characteristics SummaryTable 10.1 Filter Routine Characteristics SummaryTable 10.1 Filter Routine Characteristics SummaryTable 10.1 Filter Routine Characteristics SummaryTable 10.1 Filter Routine Characteristics Summary

Other variations of IIR biquad sections are possible. You can achieve more
precision by increasing the feedback variables or coefficients to 64-bits.
Existing 16-bit or 32-bit subroutines can be optimized to exclude those
multiplications when the coefficients are known to be zero.

Coefficients for these filters can be generated by many digital filter design
software tools. These packages, however, do not determine if a 16-bit or
32-bit filter is required for proper convergence. A few of these companies
are listed below.

Momentum Data Systems (714) 557-6884
Hyperception (214) 343-8525
The Athena Group (904) 371-2567
Signalogic (214) 343-0069

	Chapter 10: Variations On IIR Biquad Filters
	10.1 Overview
	10.1.1 IIR Biquad Filter
	10.1.2 Biquad Filter Subroutine

	10.2 Multiprecision Filters
	10.2.1 Multiprecision Multiplication On ADSP-2100 Family DSPs
	10.2.2 Double-Precision Biquad
	10.2.3 Half, Double-Precision Biquad
	10.2.4 Half, Triple-Precision Biquad

	10.3 Optimized 16-Bit Biquads
	10.4 Conclusion

