
IntroductionIntroductionIntroductionIntroductionIntroduction 11111

11111

1.11.11.11.11.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
This book presents a compilation of routines for a variety of common
digital signal processing applications based on the ADSP-2100 DSP
microprocessor family. These routines may be used as is or they may
serve as a jumping-off point for the development of routines tailored to
your particular application. Each routine is prefaced by a discussion of the
algorithm or data formats underlying the code.

Besides showing the specific applications, the set of routines demonstrates
a variety of programming tactics for getting the most performance out of
the ADSP-2100 family processors, for example, the proper way to segment
loops to utilize the ADSP-2100’s cache memory. We believe that readers
will benefit from reading every chapter, even if their present application
interests concern only a single topic.

The material in this book was originally published as Volumes 1, 2 and 3
of the ADSP-2100 Family Applications Handbook. The information in those
volumes has been updated and integrated into this book; it supersedes
those earlier publications.

1.21.21.21.21.2 ADSP-2100 FAMILY OF PROCESSORSADSP-2100 FAMILY OF PROCESSORSADSP-2100 FAMILY OF PROCESSORSADSP-2100 FAMILY OF PROCESSORSADSP-2100 FAMILY OF PROCESSORS
This section briefly describes the ADSP-2100 family of processors. For
more complete information, refer to the ADSP-2100 User’s Manual,
ADSP-2101 User’s Manual, and ADSP-2111 User’s Manual, available from
Analog Devices or the ADSP-2100 Family User’s Manual, available from
Prentice Hall and Analog Devices. For the applications in this book,
“ADSP-2100” refers to any processor in the ADSP-2100 family unless
otherwise noted.

The ADSP-2100 is a programmable single-chip microprocessor optimized
for digital signal processing (DSP) and other high-speed numeric
processing applications. The ADSP-2100 chip contains an ALU, a
multiplier/accumulator, a barrel shifter, two data address generators and
a program sequencer; data and program memories are external. The
ADSP-2100A is a pin- and code-compatible version of the original ADSP-
2100 fabricated, in 1.0-µm CMOS. It can operate at a faster clock rate than
the ADSP-2100.

11111

22222

IntroductionIntroductionIntroductionIntroductionIntroduction

The ADSP-2101 is a programmable single-chip microcomputer based on the
ADSP-2100. Like the ADSP-2100, the ADSP-2101 contains computational
units, as well as a program sequencer and dual address generators.
Additionally, there are 1K words of data memory and 2K words of
program memory on chip, two serial ports, a timer, boot circuitry (for
loading on-chip program memory at reset), and enhanced interrupt
capabilities. Because the ADSP-2101 is code-compatible with the ADSP-
2100, the programs in this book can be executed on these chips as well
(some modifications for interrupt vectors may be necessary), although not
all programs are designed to make use of the extra features and functions
of the ADSP-2101.

1.2.11.2.11.2.11.2.11.2.1 ADSP-2100 ArchitectureADSP-2100 ArchitectureADSP-2100 ArchitectureADSP-2100 ArchitectureADSP-2100 Architecture
This section gives a broad overview of the ADSP-2100 internal
architecture, using Figure 1.1 to show the architecture of the ADSP-2100
processor.

The ADSP-2100 processor contains three full-function and independent
computational units: an arithmetic/logic unit, a multiplier/accumulator
and a barrel shifter. The computational units process 16-bit data directly
and provide for multiprecision computation.

Two dedicated data address generators and a complete program
sequencer supply addresses. The sequencer supports single-cycle
conditional branching and executes program loops with zero overhead.
Dual address generators allow the processor to output simultaneous
addresses for dual operand fetches. Together the sequencer and data
address generators allow computational operations to execute with
maximum efficiency. The ADSP-2100 family uses a modified Harvard
architecture in which data memory stores data, and program memory
stores both instructions and data. Able to store data in both program and
data memory, ADSP-2100 processors are capable of fetching two operands
on the same instruction cycle.

The internal components are supported by five internal buses.

• Program Memory Address (PMA) bus
• Program Memory Data (PMD) bus
• Data Memory Address (DMA) bus
• Data Memory Data (DMD) bus
• Result (R) bus (which interconnects the computational units)

11111IntroductionIntroductionIntroductionIntroductionIntroduction

33333

16

BUS
EXCHANGE

DMD

PMD

DMA

PMA

INPUT REGS

OUTPUT REGS

ALU

INPUT REGS

OUTPUT REGS

MAC

INPUT REGS

OUTPUT REGS

SHIFTER

R BUS 16

DMD BUS

DATA
ADDRESS

GENERATOR
#2

DATA
ADDRESS

GENERATOR
#1

24

14

14PMA BUS

DMA BUS

PMD BUS

PROGRAM
SEQUENCER

INSTRUCTION
REGISTER

CACHE
MEMORY

Figure 1.1 ADSP-2100 Internal ArchitectureFigure 1.1 ADSP-2100 Internal ArchitectureFigure 1.1 ADSP-2100 Internal ArchitectureFigure 1.1 ADSP-2100 Internal ArchitectureFigure 1.1 ADSP-2100 Internal Architecture

On the ADSP-2100, the four memory buses are extended off-chip for direct
connection to external memories.

The program memory data (PMD) bus serves primarily to transfer
instructions from off-chip memory to the internal instruction register.
Instructions are fetched and loaded into the instruction register during
one processor cycle; they execute during the following cycle while the

11111

44444

IntroductionIntroductionIntroductionIntroductionIntroduction

next instruction is being fetched. The instruction register introduces a
single level of pipelining in the program flow. Instructions loaded into the
instruction register are also written into the cache memory, to be
described below.

The next instruction address is generated by the program sequencer
depending on the current instruction and internal processor status. This
address is placed on the program memory address (PMA) bus. The
program sequencer uses features such as conditional branching, loop
counters and zero-overhead looping to minimize program flow overhead.
The program memory address (PMA) bus is 14 bits wide, allowing direct
access to up to 16K words of instruction code and 16K words of data. The
state of the PMDA pin distinguishes between code and data access of
program memory. The program memory data (PMD) bus, like the
processor’s instruction words, is 24 bits wide.

The data memory address (DMA) bus is 14 bits wide allowing direct
access of up to 16K words of data. The data memory data (DMD) bus is 16
bits wide. The data memory data (DMD) bus provides a path for the
contents of any register in the processor to be transferred to any other
register, or to any external data memory location, in a single cycle. The data
memory address can come from two sources: an absolute value specified
in the instruction code (direct addressing) or the output of a data address
generator (indirect addressing). Only indirect addressing is supported for
data fetches via the program memory bus.

The program memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or via the PMD-
DMD bus exchange unit. The PMD-DMD bus exchange unit permits data
to be passed from one bus to the other. It contains hardware to overcome
the 8-bit width discrepancy between the two buses when necessary.

Each computational unit contains a set of dedicated input and output
registers. Computational operations generally take their operands from
input registers and load the result into an output register. The registers act
as a stopover point for data between the external memory and the
computational circuitry, effectively introducing one pipeline level on
input and one level on output. The computational units are arranged side
by side rather than in cascade. To avoid excessive pipeline delays when a
series of different operations are performed, the internal result (R) bus
allows any of the output registers to be used directly (without delay) as
the input to another computation.

11111IntroductionIntroductionIntroductionIntroductionIntroduction

55555

For a wide variety of calculations, it is desirable to fetch two operands at
the same time—one from data memory and one from program memory.
Fetching data from program memory, however, makes it impossible to
fetch the next instruction from program memory on the same cycle; an
additional cycle would be required. To avoid this overhead, the ADSP-
2100 incorporates an instruction cache which holds sixteen words. The
benefit of the cache architecture is most apparent when executing a
program loop that can be totally contained in the cache memory. In this
situation, the ADSP-2100 works like a three-bus system with an
instruction fetch and two operand fetches taking place at the same time.
Many algorithms are readily coded in loops of sixteen instructions or less
because of the parallelism and high-level syntax of the ADSP-2100
assembly language.

Here’s how the cache functions: Every instruction loaded into the
instruction register is also written into cache memory. As additional
instructions are fetched, they overwrite the current contents of cache in a
circular fashion. When the current instruction does a program memory
data access, the cache automatically sources the instruction register if its
contents are valid. Operation of the cache is completely transparent to
user.

There are two independent data address generators (DAGs). As a pair,
they allow the simultaneous fetch of data stored in program and in data
memory for executing dual-operand instructions in a single cycle. One
data address generator (DAG1) can supply addresses to the data memory
only; the other (DAG2) can supply addresses to either the data memory or
the program memory. Each DAG can handle linear addressing as well as
modulo addressing for circular buffers.

With its multiple bus structure, the ADSP-2100 supports a high degree of
operational parallelism. In a single cycle, the ADSP-2100 can fetch an
instruction, compute the next instruction address, perform one or two
data transfers, update one or two data address pointers and perform a
computation. Every instruction executes in a single cycle.

Figure 1.2, on the next page, is a simplified representation of the ADSP-
2100 in a system context. The figure shows the two external memories
used by the processor. Program memory stores instructions and is also
used to store data. Data memory stores only data. The data memory
address space may be shared with memory-mapped peripherals, if
desired. Both memories may be accessed by external devices, such as a

11111

66666

IntroductionIntroductionIntroductionIntroductionIntroduction

system host, if desired. Figure 1.2 also shows the processor control
interface signals, (RESET, HALT and TRAP) the four interrupt request
lines, the bus request and bus grant lines (BR and BG) and the clock input
(CLKIN) and output (CLKOUT).

Figure 1.2 ADSP-2100 SystemFigure 1.2 ADSP-2100 SystemFigure 1.2 ADSP-2100 SystemFigure 1.2 ADSP-2100 SystemFigure 1.2 ADSP-2100 System

1.2.21.2.21.2.21.2.21.2.2 ADSP-2101 ArchitectureADSP-2101 ArchitectureADSP-2101 ArchitectureADSP-2101 ArchitectureADSP-2101 Architecture
Figure 1.3 shows the architecture of the ADSP-2101 processor. Like the
ADSP-2100, the ADSP-2101 contains an arithmetic/logic unit, a
multiplier/accumulator, and a barrel shifter—plus two data address
generators and a program sequencer.

The ADSP-2101 has 1K words of 16-bit data memory on-chip and 2K
words of 24-bit program memory on-chip. The processor can fetch an
operand from on-chip data memory, an operand from on-chip program
memory and the next instruction from on-chip program memory in a
single cycle. (The speed of on-board memory access makes this possible
and eliminates the need for cache memory as on the ADSP-2100.)

This scheme is extended off-chip via a single external memory address
bus and data bus which may be used for either program or data memory
access and for booting. Consequently, the processor can access external
memory once in any cycle.

PROGRAM
MEMORY

16/32K x 24

14

24

Program Memory
Address

Program Memory
Data

Data Memory
Address

Data Memory
Data

CLKIN CLKOUT
DATA

MEMORY

16K x 16

ADDR

DATA

DATA

ADDR

14

16

CLOCK

PERIPHERALS

ADSP-2100

4

RESET HALT TRAP IRQ BR BG

11111IntroductionIntroductionIntroductionIntroductionIntroduction

77777

INPUT REGS

OUTPUT REGS

ALU

INPUT REGS

OUTPUT REGS

MAC

R BUS 16

INPUT REGS

OUTPUT REGS

SHIFTER

DMD BUS

COMPANDING
CIRCUITRY

CONTROL
LOGIC

TIMER

DATA
ADDRESS

GENERATOR
#2

DATA
ADDRESS

GENERATOR
#1

BOOT
ADDRESS

GENERATOR

PROGRAM
SRAM

2K X 24

PROGRAM
SEQUENCER

14

24BUS
EXCHANGE

PMD BUS

DMA BUS

PMA BUS14

14

24

16

EXTERNAL
ADDRESS

BUS

INSTRUCTION
REGISTER

MUX

EXTERNAL
DATA
BUS

MUX

DATA
SRAM

1K X 16

5

SERIAL
PORT 1

Receive Reg

Transmit Reg

5

SERIAL
PORT 0

Receive Reg

Transmit Reg

Figure 1.3 ADSP-2101 Internal ArchitectureFigure 1.3 ADSP-2101 Internal ArchitectureFigure 1.3 ADSP-2101 Internal ArchitectureFigure 1.3 ADSP-2101 Internal ArchitectureFigure 1.3 ADSP-2101 Internal Architecture

Boot circuitry provides for loading on-chip program memory
automatically after reset. Wait states are generated automatically for
interfacing to a single low-cost EPROM. Multiple programs can be
selected and loaded from the EPROM with no additional hardware.

The memory interface supports memory-mapped peripherals with
programmable wait-state generation. External devices can gain control of
buses with bus request/grant signals (BR and BG). An optional execution
mode allows the ADSP-2101 to continue running while the buses are
granted to another master as long as an external memory operation is not
required.

The ADSP-2101 can respond to six user interrupts. There can be up to
three external interrupts, configured as edge- or level-sensitive. Internal
interrupts can be generated from the timer and the serial ports. There is
also a master RESET signal.

11111

88888

IntroductionIntroductionIntroductionIntroductionIntroduction

The two serial ports (“SPORTs”) provide a complete serial interface; they
interface easily and directly to a wide variety of popular serial devices.
They have inherent hardware companding (data compression and
expansion) with both µ-law and A-law available. Each port can generate
an internal programmable clock or accept an external clock.

The SPORTs are synchronous and use framing signals to control data
flow. Each SPORT can generate its serial clock internally or use an external
clock. The framing synchronization signals may be generated internally or
by an external device. Word lengths may vary from three to sixteen bits.
One SPORT (SPORT0) has a multichannel capability which allows the
receiving or transmitting of arbitrary data words from a 24-word or 32-
word bitstream. The SPORT1 pins have alternate functions and can be
configured as two additional external interrupt pins and the Flag Out (FO)
and Flag In (FI) pins.

The programmable interval timer provides periodic interrupt generation.
An 8-bit prescaler register allows the timer to decrement a 16-bit count
register over a range from each cycle to every 256 cycles. An interrupt is
generated when this count register reaches zero. The count register is
automatically reloaded from a 16-bit period register, and the count
resumes immediately.

1.31.31.31.31.3 ASSEMBLY LANGUAGE OVERVIEWASSEMBLY LANGUAGE OVERVIEWASSEMBLY LANGUAGE OVERVIEWASSEMBLY LANGUAGE OVERVIEWASSEMBLY LANGUAGE OVERVIEW
The ADSP-2100 family’s assembly language uses an algebraic syntax for
ease of coding and readability. The sources and destinations of
computations and data movements are written explicitly in each assembly
statement, eliminating cryptic assembler mnemonics. Each assembly
statement, however, corresponds to a single 24-bit instruction, executable
in one cycle. Register mnemonics, listed below, are concise and easy to
remember.

11111IntroductionIntroductionIntroductionIntroductionIntroduction

99999

Mnemonic Definition

AX0, AX1, AY0, AY1 ALU inputs
AR ALU result
AF ALU feedback
MX0, MX1, MY0, MY1 Multiplier inputs
MR0, MR1, MR2 Multiplier result (3 parts)
MF Multiplier feedback
SI Shifter input
SE Shifter exponent
SR0, SR1 Shifter result (2 parts)
SB Shifter block (for block floating-point format)
PX PMD-DMD bus exchange
I0 - I7 DAG index registers
M0 - M7 DAG modify registers
L0 - L7 DAG length registers (for circular buffers)
PC Program counter
CNTR Counter for loops
ASTAT Arithmetic status
MSTAT Mode status
SSTAT Stack status
IMASK Interrupt mask
ICNTL Interrupt control modes
RX0, RX1 Receive data registers (not on ADSP-2100)
TX0, TX1 Transmit data registers (not on ADSP-2100)

The ADSP-2101 instruction set is an upward-compatible superset of the
ADSP-2100 instruction set; thus, programs written for the ADSP-2100 can
be executed on the ADSP-2101 with minimal changes.

Here are some examples of the ADSP-2100 assembly language. The
statement

MR = MR + MX1*MY1;

performs a multiply/accumulate operation. It multiplies the input values
in registers MX1 and MY1, adds that product to the current value of the
MR register (the result of the previous multiplication) and then writes the
new result to MR.

The statement

DM(buffer1) = AX0;

writes the value of register AX0 to data memory at the location which is
the value of the variable buffer1.

11111

1010101010

IntroductionIntroductionIntroductionIntroductionIntroduction

1.41.41.41.41.4 DEVELOPMENT SYSTEDEVELOPMENT SYSTEDEVELOPMENT SYSTEDEVELOPMENT SYSTEDEVELOPMENT SYSTEMMMMM
The ADSP-2100 family is supported with a complete set of software and
hardware development tools. The ADSP-2100 Family Development
System consists of Development Software to aid in software design and
in-circuit emulators to facilitate the debug cycle. EZ-ICE™ evaluation
boards are available for evaluating the processors. Additional
development tool capabilities continue to be added as new members of
the processor family are introduced.

The Development Software includes:

• System Builder

This module allows the designer to specify the amount of RAM and ROM
available, the allocation of program and data memory and any memory-
mapped I/O ports for the target hardware environment. It uses high-level
constructs to simplify this task. This specification is used by the linker,
simulators, and emulators.

• Assembler

This module assembles a user’s source code and data modules. It supports
the high-level syntax of the instruction set. To support modular code
development, the Assembler provides flexible macro processing and
“include” files. It provides a full range of diagnostics.

• Linker

The Linker links separately assembled modules. It maps the linked code
and data output to the target system hardware, as specified by the System
Builder output.

• Simulator

This module performs an instruction-level simulated execution of ADSP-
2100 family assembly code. The interactive user interface supports full
symbolic assembly and disassembly of simulated instructions. The
Simulator fully simulates the hardware configuration described by the
System Builder module. It flags illegal operations and provides several
displays of the internal operations of the processor.

11111IntroductionIntroductionIntroductionIntroductionIntroduction

1111111111

• PROM Splitter

This module reads the Linker output and generates PROM-programmer-
compatible files.

• C Compiler

The C Compiler reads ANSI C source and outputs source code ready to be
assembled. It also supports inline assembler code.

In-circuit emulators provide stand-alone, real-time, in-circuit emulation.
The emulators provide program execution with little or no degradation in
processor performance. The emulators duplicate the simulators’
interactive and symbolic user interface.

Complete information on development tools is available from Analog
Devices.

1.51.51.51.51.5 CONVENTIONS OF NOTATIOCONVENTIONS OF NOTATIOCONVENTIONS OF NOTATIOCONVENTIONS OF NOTATIOCONVENTIONS OF NOTATIONNNNN
The following conventions are used throughout this book:

• All listings begin with a comment block that summarizes the calling
parameters, the return values, the registers that are altered, and the
computation time of the routine (in terms of the routine’s parameters,
in some cases).

• In listings, all keywords are uppercase; user-defined names (such as
labels, variables, and data buffers) are lowercase. In text, keywords are
uppercase and user-defined names are lowercase italics. Note that this
convention is for readability only.

• In comments, register values are indicated by “=” if the register
contains the value or by “—>” if the register points to the value in
memory.

• All numbers are decimal unless otherwise specified. In listings,
constant values are specified in binary, octal, decimal, or hexadecimal
by the prefixes B#, O#, D#, and H#, respectively.

11111

1212121212

IntroductionIntroductionIntroductionIntroductionIntroduction

1.61.61.61.61.6 PROGRAMS ON DISPROGRAMS ON DISPROGRAMS ON DISPROGRAMS ON DISPROGRAMS ON DISKKKKK
This book includes an IBM PC 51⁄4 inch high-density diskette containing
the routines that appear in this book. As with the printed routines, we
cannot guarantee suitability for your application. The diskette also
contains a demonstration version of the ADSP-2101 Simulator. This
demonstration is self-running and documented on-line.

1.71.71.71.71.7 FOR FURTHER SUPPORFOR FURTHER SUPPORFOR FURTHER SUPPORFOR FURTHER SUPPORFOR FURTHER SUPPORTTTTT
You can reach Analog Devices in the following ways:

• By contacting your local Analog Devices Sales Representative
• For information on DSP product features, availability, and pricing, call

(617) 461-3881 in Norwood, Massachusetts, USA
• For Applications Engineering information, call either the DSP

applications group at (617) 461-3672 in Norwood, Massachusetts, USA,
or the Linear applications group at (617) 461-2628 in Wilmington,
Massachusetts, USA

• The DSP Norwood office Fax number is (617) 461-3010
• The factory may also be reached by

Telex: 924491
TWX: 710/394-6577
Cables: ANALOGNORWOODMASS

• Through the DSP Group’s Bulletin Board Service; it can be reached
at 300, 1200, or 2400 baud, no parity, 8 bits data, 1 stop bit by dialing:

(617) 461-4258
• By writing to:

Analog Devices
SPD-DSP
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

	Chapter 1: Introduction
	1.1 Overview
	1.2 ADSP-2100 Family of Processors
	1.2.1 ADSP-2100 Architecture
	1.2.2 ADSP-2101 Architecture

	1.3 Assembly Language Overview
	1.4 Development System
	1.5 Conventions of Notation
	1.6 Programs on Disk
	1.7 For Further Support

